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Abstract

Alignment  is  a  way of  comparing  two sequences,  usually  of  DNA.  It 
computes a score based on how unlikely a series of insertions, deletions 
and  changes  are  needed  to  transform  one  into  the  other.   It  is  used 
throughout  bioinformatics  for  many  purposes.   The  standard  way  to 
compute it is a dynamic algorithm which computes the alignment of every 
pair of start-anchored subsequences.  In this paper, I propose an alternative 
which avoids most of these calculations, and present data on its real-world 
speed.   The worst-case asymptotic  behavior  remains  quadratic,  and the 
greater code complexity often results in a net-slowdown, but for the right 
problem it can be effective.

Best-Case Predictions

If we are given two sequences of known length, we 
can  state  the  highest-possible  alignment  score 
without actually examining the sequences.  If the 
sequences are the same length, the best possibility 
is  that  they  are  identical,  in  which  case  the 
alignment score is matchScore  length.  If they are⋅  
not the same length, then there must be sufficient 
insertions to make up the difference, but the rest 
could  match,  making  the  score  (matchScore  ⋅ 
shorterLengh) –  (insertionPenalty  ⋅ 
lengthDifference).  There could be more insertions 
with deletions to cancel them out, but those would 
only decrease the score, and we are computing a 
maximum possibility,

Culling

The principle of possibility-culling is simple.  If we 
are only interested in the best valid alignment of 
two  sequences,  and  we  already  know  one 
alignment  is  possible,  we  are  not  interested  in 
possibilities that are worse than the one we have. 
This  is  useful  because  alignment  scores  are 
generally found using subsequences.  If we know 
the score of one side of a split and we already have 
a possibility in mind for the whole sequence, we 
know how good the other side of the split needs to 
be in order to matter.

Putting it Together

Let  us  now  consider  an  algorithm  that  finds  an 

alignment  score  between  two  sequences  that  is 
better  than  a  given target,  or  determines  that  no 
such alignment exists.  We will keep track of both 
known-best  alignments  and 
known-to-be-worse-than alignments.

• If we already know the alignment, use that

• If  we already know that  the  alignment  is 
worse than our target, return failure

• If the best possible score for sequences of 
these  lengths  is  worse  than  our  target, 
return failure

• First  try  aligning  the  last  characters  to 
each-other,  then  try  ending  with  an 
insertion on either side,  For each case:

◦ Calculate  how  good  the  subsequence 
match  would  need  to  be  to  meet  our 
target

◦ Recursively calculate that alignment

◦ If it succeeds, use that as our new target

• If  we  had  any  successes,  return  and 
remember the best 

• If not, remember that this alignment cannot 
be better than our target and return failure.

In practice, this means that we will only consider 
as many insertions as could be worth it.  See figure 
1 for a detailed example.



- a a a c c a t t t g a a t g g a t g t c

- 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40

a -2 1≤1 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37

t -4 -1 0≤0 -2 -4 -6 -8 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34

g -6 -3 -2 -1≤-1 -3 -5≤-2 -7 -9 -9 -11 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31

g -8 -5 -4 -3≤0 -2≤-2 -4 -6≤-1 -8 -10 -10 -10 -12 -14 -16 -16 -18 -20 -22 -24 -26 -28

a -10 -7 -4 -3 -4≤1 -3≤-1 -3 -5≤-2 -7≤-1 -9 -11 -9 -11 -13 -15 -17 -17 -19 -21 -23 -25

t -12 -9 -6 -5 -4 -5≤2 -4≤0 -2 -4≤-1 -6≤0 -8 -10 -10 -10 -12 -14 -16 -16 -18 -20 -22

g -14 -11 -8 -7 -6 -5 -6≤1 -4≤-1 -3 -5≤0 -5≤1 -7 -9 -11 -9 -11 -13 -15 -15 -17 -19

t -16 -13 -10 -9 -8 -7 -6 -5≤2 -3≤0 -2 -4≤-1 -6≤2 -8 -8 -10 -10 -12 -12 -14 -14 -16

c -18 -15 -12 -11 -8 -7 -8 -7≤3 -5≤1 -4≤-1 -3 -5≤0 -7≤3 -9 -9 -11 -11 -13 -13 -15 -13

a -20 -17 -14 -11 -10 -9 -6 -8 -7≤2 -6≤0 -5≤-2 -2 -4≤1 -6≤3 -8 -10 -10 -12 -14 -14 -15

a -22 -19 -16 -13 -12 -11 -8 -7 -9 -8≤3 -7≤1 -4≤-1 -1 -3≤2 -5≤2 -7≤3 -9 -11 -13 -15 -15

t -24 -21 -18 -15 -14 -13 -10 -7 -6 -8 -9≤2 -6≤0 -3≤-2 0 -2≤1 -4≤1 -6≤2 -8 -10 -12 -14

c -26 -23 -20 -17 -14 -13 -12 -9 -8 -7 -9≤3 -8≤1 -5≤-1 -2 -1 -3≤0 -5≤0 -7≤1 -9 -11 -11

c -28 -25 -22 -19 -16 -13 -14 -11 -10 -9 -8 -10≤3 -7≤1 -4≤-1 -3 -2 -4≤-1 -6≤-1 -8≤2 -10≤3 -10

g -30 -27 -24 -21 -18 -15 -14 -13 -12 -11 -8 -9 -9≤4 -6≤2 -3≤0 -2 -3 -5≤-1 -5≤0 -7≤1 -9≤4

a -32 -29 -26 -23 -20 -17 -14 -15 -14 -13 -10 -7 -8 -8≤3 -5≤1 -4≤-1 -1 -3 -5≤-2 -6≤-1 -8≤2

c -34 -31 -28 -25 -22 -19 -16 -15 -16 -15 -12 -9 -8 -9≤4 -7≤2 -6≤0 -3≤-2 -2≤-2 -4 -6≤-1 -5≤0

t -36 -33 -30 -27 -24 -21 -18 -15 -14 -15 -14 -11 -10 -7 -9≤5 -8≤3 -5≤1 -2≤-1 -3≤-3 -3 -5≤-2

t -38 -35 -32 -29 -26 -23 -20 -17 -14 -13 -15 -13 -12 -9 -8 -10≤6 -7≤4 -4≤2 -3≤0 -2≤-2 -4

Figure 1: An alignment matrix of two short sequences using this method.  The algorithm only computes 
the numbers in bold, skipping everything else.  Matches are worth 1, mismatches -1 and insertions -2.

Performance

The performance of this algorithm depends on the 
data  being  compared.   If  the  sequences  match 
perfectly,  only  n  cases  must  be  considered, 
whereas  if  they  are  completely  different,  almost 
n2/2 must be.

In order to collect practical data, I downloaded 20 
versions of the Influenza Polymerase Basic 1 gene 
from  NCBI.   The  choice  of  gene  was  largely 
arbitrary.   PB1  is  conveniently  sized  (between 
2250  and  2300  base  pairs)  and  there  are  many 
sequenced copies of it.

Because this algorithm can be extremely slow in 
the worst  case,  I  dropped all  pairs  of  sequences 
with match scores (still using +1, -1, -2) less than 
half  their  average  length.   Of  the  190  possible 
pairs, this left 119 (including 20 pairs-with-self.

For  each pair,  I  ran both the standard algorithm 
and my algorithm three times and took the mean, 
then  divided  the  means.   The  code  is 
single-threaded  and  ran  on  a  multicore  system 
with  no  other  cpu-intensive  tasks,  so  the  data 
should be fairly reliable.

As  expected,  the  resulting  times  were  almost 
monotonic.  For sequence pairs with match ratios 
over  0.93,  this  algorithm  outperformed  the 
traditional,  while  for  those  below  it  did  not. 
Excluding the extremely close matches (those with 
ratios over .99), the relationship looks exponential. 
Using  simple  linear  regression,  we  find  that 
ln(timeRatio)≈-12.04 matchRatio+10.97  with⋅  
R2=0.96.

The results are graphed in figure 2, and included 
in full in the supplemental data file.



Next Steps

It is likely that more small optimizations could be 
done  in  the  implementation.   In  particular, 
recursion  is  rarely  the  most  efficient.   Some 
speedup  could  probably  be  achieved  using  a 
manual stack.  Also, the stl maps used to hold the 
data may not be ideal.

Some deeper optimizations may also be possible. 
Intuition suggests that there are cases in which we 
can use existing knowledge to precompute a lower 
upper-bound  on  a  subalignment.   Also,  there  is 
benefit to trying to more likely subalignment first, 
and the current heuristic of “aligns, insertion in s1, 
insertion in s2” cries out for improvement.

In any case, some form of early-abort for poorly 
matched  sequences  is  clearly  needed.   This 
algorithm is unlikely to ever match brute dynamic 
programming for uncorrelated sequences.  In order 
to get results as quickly as possible, we want to 
stop trying this algorithm and switch to the other 
quickly when encountering such a pair.

Finally, there has been considerable work on using 
subsequence  hashing  to  optimize  alignment 
calculation.   Some  of  those  algorithms  are 
nondeterministic,  and  some call  out  to  dynamic 
programming  to  fill  in  cases  they  don't  handle. 
Since that approach is completely unlike this one, 
it  is likely that they could be combined to good 
effect.
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