
Faster Alignment Calculations via Recursion and Culling
Daniel Speyer, dls2192

Abstract

Alignment is a way of comparing two sequences, usually of DNA. It
computes a score based on how unlikely a series of insertions, deletions
and changes are needed to transform one into the other. It is used
throughout bioinformatics for many purposes. The standard way to
compute it is a dynamic algorithm which computes the alignment of every
pair of start-anchored subsequences. In this paper, I propose an alternative
which avoids most of these calculations, and present data on its real-world
speed. The worst-case asymptotic behavior remains quadratic, and the
greater code complexity often results in a net-slowdown, but for the right
problem it can be effective.

Best-Case Predictions

If we are given two sequences of known length, we
can state the highest-possible alignment score
without actually examining the sequences. If the
sequences are the same length, the best possibility
is that they are identical, in which case the
alignment score is matchScore length. If they are⋅
not the same length, then there must be sufficient
insertions to make up the difference, but the rest
could match, making the score (matchScore ⋅
shorterLengh) – (insertionPenalty ⋅
lengthDifference). There could be more insertions
with deletions to cancel them out, but those would
only decrease the score, and we are computing a
maximum possibility,

Culling

The principle of possibility-culling is simple. If we
are only interested in the best valid alignment of
two sequences, and we already know one
alignment is possible, we are not interested in
possibilities that are worse than the one we have.
This is useful because alignment scores are
generally found using subsequences. If we know
the score of one side of a split and we already have
a possibility in mind for the whole sequence, we
know how good the other side of the split needs to
be in order to matter.

Putting it Together

Let us now consider an algorithm that finds an

alignment score between two sequences that is
better than a given target, or determines that no
such alignment exists. We will keep track of both
known-best alignments and
known-to-be-worse-than alignments.

• If we already know the alignment, use that

• If we already know that the alignment is
worse than our target, return failure

• If the best possible score for sequences of
these lengths is worse than our target,
return failure

• First try aligning the last characters to
each-other, then try ending with an
insertion on either side, For each case:

◦ Calculate how good the subsequence
match would need to be to meet our
target

◦ Recursively calculate that alignment

◦ If it succeeds, use that as our new target

• If we had any successes, return and
remember the best

• If not, remember that this alignment cannot
be better than our target and return failure.

In practice, this means that we will only consider
as many insertions as could be worth it. See figure
1 for a detailed example.

- a a a c c a t t t g a a t g g a t g t c

- 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40

a -2 1≤1 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37

t -4 -1 0≤0 -2 -4 -6 -8 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34

g -6 -3 -2 -1≤-1 -3 -5≤-2 -7 -9 -9 -11 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31

g -8 -5 -4 -3≤0 -2≤-2 -4 -6≤-1 -8 -10 -10 -10 -12 -14 -16 -16 -18 -20 -22 -24 -26 -28

a -10 -7 -4 -3 -4≤1 -3≤-1 -3 -5≤-2 -7≤-1 -9 -11 -9 -11 -13 -15 -17 -17 -19 -21 -23 -25

t -12 -9 -6 -5 -4 -5≤2 -4≤0 -2 -4≤-1 -6≤0 -8 -10 -10 -10 -12 -14 -16 -16 -18 -20 -22

g -14 -11 -8 -7 -6 -5 -6≤1 -4≤-1 -3 -5≤0 -5≤1 -7 -9 -11 -9 -11 -13 -15 -15 -17 -19

t -16 -13 -10 -9 -8 -7 -6 -5≤2 -3≤0 -2 -4≤-1 -6≤2 -8 -8 -10 -10 -12 -12 -14 -14 -16

c -18 -15 -12 -11 -8 -7 -8 -7≤3 -5≤1 -4≤-1 -3 -5≤0 -7≤3 -9 -9 -11 -11 -13 -13 -15 -13

a -20 -17 -14 -11 -10 -9 -6 -8 -7≤2 -6≤0 -5≤-2 -2 -4≤1 -6≤3 -8 -10 -10 -12 -14 -14 -15

a -22 -19 -16 -13 -12 -11 -8 -7 -9 -8≤3 -7≤1 -4≤-1 -1 -3≤2 -5≤2 -7≤3 -9 -11 -13 -15 -15

t -24 -21 -18 -15 -14 -13 -10 -7 -6 -8 -9≤2 -6≤0 -3≤-2 0 -2≤1 -4≤1 -6≤2 -8 -10 -12 -14

c -26 -23 -20 -17 -14 -13 -12 -9 -8 -7 -9≤3 -8≤1 -5≤-1 -2 -1 -3≤0 -5≤0 -7≤1 -9 -11 -11

c -28 -25 -22 -19 -16 -13 -14 -11 -10 -9 -8 -10≤3 -7≤1 -4≤-1 -3 -2 -4≤-1 -6≤-1 -8≤2 -10≤3 -10

g -30 -27 -24 -21 -18 -15 -14 -13 -12 -11 -8 -9 -9≤4 -6≤2 -3≤0 -2 -3 -5≤-1 -5≤0 -7≤1 -9≤4

a -32 -29 -26 -23 -20 -17 -14 -15 -14 -13 -10 -7 -8 -8≤3 -5≤1 -4≤-1 -1 -3 -5≤-2 -6≤-1 -8≤2

c -34 -31 -28 -25 -22 -19 -16 -15 -16 -15 -12 -9 -8 -9≤4 -7≤2 -6≤0 -3≤-2 -2≤-2 -4 -6≤-1 -5≤0

t -36 -33 -30 -27 -24 -21 -18 -15 -14 -15 -14 -11 -10 -7 -9≤5 -8≤3 -5≤1 -2≤-1 -3≤-3 -3 -5≤-2

t -38 -35 -32 -29 -26 -23 -20 -17 -14 -13 -15 -13 -12 -9 -8 -10≤6 -7≤4 -4≤2 -3≤0 -2≤-2 -4

Figure 1: An alignment matrix of two short sequences using this method. The algorithm only computes
the numbers in bold, skipping everything else. Matches are worth 1, mismatches -1 and insertions -2.

Performance

The performance of this algorithm depends on the
data being compared. If the sequences match
perfectly, only n cases must be considered,
whereas if they are completely different, almost
n2/2 must be.

In order to collect practical data, I downloaded 20
versions of the Influenza Polymerase Basic 1 gene
from NCBI. The choice of gene was largely
arbitrary. PB1 is conveniently sized (between
2250 and 2300 base pairs) and there are many
sequenced copies of it.

Because this algorithm can be extremely slow in
the worst case, I dropped all pairs of sequences
with match scores (still using +1, -1, -2) less than
half their average length. Of the 190 possible
pairs, this left 119 (including 20 pairs-with-self.

For each pair, I ran both the standard algorithm
and my algorithm three times and took the mean,
then divided the means. The code is
single-threaded and ran on a multicore system
with no other cpu-intensive tasks, so the data
should be fairly reliable.

As expected, the resulting times were almost
monotonic. For sequence pairs with match ratios
over 0.93, this algorithm outperformed the
traditional, while for those below it did not.
Excluding the extremely close matches (those with
ratios over .99), the relationship looks exponential.
Using simple linear regression, we find that
ln(timeRatio)≈-12.04 matchRatio+10.97 with⋅
R2=0.96.

The results are graphed in figure 2, and included
in full in the supplemental data file.

Next Steps

It is likely that more small optimizations could be
done in the implementation. In particular,
recursion is rarely the most efficient. Some
speedup could probably be achieved using a
manual stack. Also, the stl maps used to hold the
data may not be ideal.

Some deeper optimizations may also be possible.
Intuition suggests that there are cases in which we
can use existing knowledge to precompute a lower
upper-bound on a subalignment. Also, there is
benefit to trying to more likely subalignment first,
and the current heuristic of “aligns, insertion in s1,
insertion in s2” cries out for improvement.

In any case, some form of early-abort for poorly
matched sequences is clearly needed. This
algorithm is unlikely to ever match brute dynamic
programming for uncorrelated sequences. In order
to get results as quickly as possible, we want to
stop trying this algorithm and switch to the other
quickly when encountering such a pair.

Finally, there has been considerable work on using
subsequence hashing to optimize alignment
calculation. Some of those algorithms are
nondeterministic, and some call out to dynamic
programming to fill in cases they don't handle.
Since that approach is completely unlike this one,
it is likely that they could be combined to good
effect.

	Faster Alignment Calculations via Recursion and Culling

