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Abstract

Understanding how processes spend their time is no
easy task: as systems increase their size and interact
with other processes, it becomes more challenging to
track them down. Gathering data is thus of crucial
importance—the more of it there is, the bigger the
potential to make better decisions. This translates
into performance optimizations, bug squashing, and
even addressing issues that were previously unknown.
The standard tools for gathering data about processes
are profilers, which measure where processes spend
their time while running. However, most profilers
measure things like CPU, memory or system calls in-
dependently, but more often than not, optimizations
are a combination of all these metrics. Furthermore,
most profilers either observe a single process or the
entire system, while most tasks of interest involve
many – but not all – co-operating processes. We
propose and implement a Recursive Systemic Pro-
filer (RSP) a tool that can intelligently interconnect
different metrics and provide visualizations that give
programmers a more complete view of their systems.

1 Introduction

Even though premature optimization is the root of all
evil, profiling the performance of a system is critical
for its improvement. Profiling is, however, no small
task: one has to know exactly where in the operat-
ing system to look for clues about program behavior,
pick the appropriate tool out of several to collect in-
formation, and finally make sense of all the data that
comes back.

We know from experience that, most of the time,
the slowness of systems doesn’t come from the entire
system but from very specific parts. As programmers,
we want to be able to identify where exactly these
parts are so that we can optimize only those parts
and not waste time optimizing unimportant parts.
We have identified three steps in order to effectively
profile programs: reconnaissance, data collection and
data interpretation. We describe each part next.

First, one needs to have an idea about where the

slowness of their program is coming from: is it spend-
ing a lot of time doing I/O? Are high levels of con-
currency causing lock contention? Does it depend on
an external process to make progress? Based on the
kind of process being analyzed, this task can range
from either being trivial or hard to identify.

Once one knows where the slowness is coming
from, the next step is to collect data. A very typ-
ical but rudimentary way to achieve this would be to
insert print statements throughout relevant parts of
a program. This would allow us to get a sense for the
parts of the code being executed, and to a limited
degree, to see if our program does what we think it
does. However, this is often not reliable, especially
for programs that interact with several other pieces.
This is where profilers come into play. There exist
several of them for virtually every part of Linux sys-
tems: some are targeted only at some particular part
of the system while others are more general and offer
higher level information.

Finally, once the relevant data has been gathered,
one has to interpret it. This is sometimes not as
trivial as it sounds because the data could come from
many sources: the hardware, the kernel, user applica-
tions, etc. At first glance, these sources can be seem-
ingly unrelated, however, when data is presented by
taking into account the notion of an interconnected
system, it could tell an entirely different story.

We present the Recursive Systemic Profiler (RSP),
a tool that makes it easy to profile and visualize the
behavior of programs. RSP is aimed at programmers
wishing to understand how programs spend their time
and how they interoperate with other programs as
well as with various parts of the operating system.
This allows programmers to quickly answer questions
like: Why is this process slow? What is it waiting on?
How can I improve it?

2 Motivating Examples

The guiding principle of RSP is that looking at one
process is not enough. To that end, here are five
scenarios in which that is true.

The classic design of a web application has sepa-
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rate processes for web server, application server and
storage backend. Sometimes the web server is divided
into a base server and a cgi script, and sometimes
there are multiple storage backends. Every request
therefore touches numerous systems, but a single en-
gineering team is responsible for end-to-end perfor-
mance.

Launching any new process in X11 will involve
interactions of the process, the X server, the win-
dow manager, and possibly the composition manager.
These interactions can be quite complex. For exam-
ple, the application may wish to store its icons in
X’s memory. This is also a case in which a merely
systemic profiler will fail, as it is inevitable that the
X server will do unrelated work while the launch is
taking place.

Any distributed database, by nature, will involve
a large number of processes. It is generally possi-
ble to run them all on the same host, but getting
useful performance data from several threads simul-
taneously remains a challenge.

Compilation of any complex project is often frus-
tratingly slow and also notoriously difficult to profile,
owing to the large number of short-lived processes
and the substantial combined amount of time.

Playing video requires the interaction of the video
player, X server, window manager and composition
manager as described in the launch case, as well as
the sound system (pulseaudio and alsa-sink on
our test system). In addition, the video player in-
teracts directly with the video card, using hardware-
accelerated resizes, subpicture mixes, colorspace trans-
forms, and in some cases decoding. Performance in
video is a particularly interesting problem as it ex-
periences hard deadlines every 16ms, and missing a
single one produces a user-noticeable glitch.

We’ll return to these scenarios when we evaluate
our work.

3 Data Collectors

3.1 Overview

In order to understand how a system is performing,
we first need to collect data. There are several open
source profiling tools that focus on this task. We
can classify them in three different groups by the ap-
proach they use to collect information: event-based,
sample-based and a combination of both.

Event-based tools work by instrumenting programs:
they insert marks at different points of a system and
trigger an event when the profiled application runs
into them. These events can in turn trigger prede-
fined data-collection actions as simple as increment-

ing counters, but they can also perform more compli-
cated tasks like saving stack dumps for later analysis
or generating some kind of logging.

Sample-based tools work by collecting samples of
programs every certain number of ticks, as predefined
by the user. Samples can come in the form of per-
formance counters, stack traces, or something of rel-
evance that is already available at the operating sys-
tem level. These kinds of profilers are typically less
accurate than event-based profilers because they rely
on samples, but since they don’t introduce the over-
head of generating events as event-based tools do,
they are usually less intrusive performance-wise to
the profiled application.

A third approach combines event-based and sample-
based profiling. Instead of collecting samples every
certain number of ticks, these profilers get a sam-
ple after a predefined number of occurrences of some
event.

3.2 Current Tools

There are a variety of open source tools within these
categories for collecting data in Linux-based operat-
ing systems. They vary in functionality and mode
of use depending on the part of the operating sys-
tem the user is interested in analyzing or the level
of data granularity desired. Some examples of these
tools include perf for system-wide profiling, strace
for system call profiling or netstat for network pro-
filing.

When we started pondering ideas for how to gather
data to create RSP, one of the first questions that
arose was the one about data gathering: would we
simply create a custom tool or would we use some-
thing that’s already available? After researching the
profiling landscape for 5 minutes, we found out that
data collection was a really challenging task, so we de-
cided to piggyback on something proven and reliable.
Since RSP focuses on giving users a full-picture view
of the system, tools such as strace or netstat where
out of the question. We mainly explored two such
tools: perf12 and lttng,3 which we discuss next.

3.2.1 perf

perf, also known as perf events and “Linux Perf
Events”, compared to similar tools like ftrace or
lttng, has the advantage of being a mature and ac-
tively developed tool that can collect system-wide
information in a combination of sample-based and
event-based fashion.

perf can gather per-process performance counters
like CPU cycles and memory cache misses; software
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Figure 1: Flame Graphs

events like CPU migrations and minor faults; as well
as high-level behavior like system calls, TCP events,
disk and file system I/O, etc. One can choose which
kinds of events to track and perf collects statistics
on them.

perf also offers dynamic tracepoints, a feature
that taps directly into symbols and registers when
there is no debug information available and into func-
tion names and line numbers when there is.

In addition to these characteristics, perf is part of
the Linux kernel itself, so not extra dependencies are
needed in order to start profiling Linux applications.

3.2.2 lttng

Another system-wide data collection tool that caught
our attention was lttng. Even though lttng is not as
mature as perf is, it offers features such as multiple
simultaneous traces and a flight recorder mode,4 in
which data can be collected and analyzed in real-time.

Much like perf, lttng can perform combined trac-
ing of both kernel and user space processes to allow
users to monitor tracepoints, CPU counters, func-
tions and offers the ability to define dynamic trace-
points when those are not enough.

Unlike perf, however lttng is not Linux kernel
specific, and it provides what it calls a Common Trace
Format (CTF), a format of data output that is Linux
independent and that according to its designers, was
designed to be streamed over the network for real
time analysis.

Finally, Since lttng is not in the kernel, it re-
quires the installation of separate packages.

3.2.3 Our choice

We decided to only target the Linux kernel with RSP
since that is what we are familiar with. We felt
perf contained all the features we needed in this re-
gard, the most important being its ability to seam-
lessly gather kernel-space and user-space stacks with-

out any extra instrumentation (as is the case with
lttng).

Another major point for perf is that, thanks to
being the ubiqutuous tool for Linux profiling, it con-
tains vast amounts of documentation that we found
invaluable.

4 Data Visualizers

Visualizations are at the heart of the Recursive Sys-
temic Profiler. Not only do visualizations help us un-
derstand what’s happening in a system in a shorter
period of time compared to reading plain text out-
put, but they also show at-a glance information that
can easily be overlooked when analyzing raw perf or
lttng stack and event traces.

4.1 Current Tools

There are a few data visualization tools currently
available, both commercial and non-commercial. We
focus on the non-commercial options since they’re the
ones we can afford. In particular, we explore two dif-
ferent tools. The first one is Flame Graphs, which is
a direct translation of raw perf output, and the sec-
ond one is TraceCompass, a more robust, full-fledged
Java application for visualizing lttng data.

4.1.1 Flame Graphs

Flame Graphs, a visualization tool invented by Bren-
dan Gregg,5 are a simple way to visualize profile data
through stack traces. Stack traces contain the names
of the functions being executed by the CPU at any
given time. The information that the stack traces
contain can vary depending on the kinds of process
being analyzed, the events one requests to be notified
of, or the duration of the profiling.

One of the key characteristics of flame graphs is
that they present their information in a hierarchical,
stack-like manner, in such a way that one can tell
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which stacks frames were triggered by which other
stacks frames, making it easy to see what’s going on
once one gets accustomed to the format.

Flame graphs also have the characteristic of being
able to show at a glance slow hot-spots (represented
by the width of the function calls in the stacks) and
overall program structure.

We drew our attention to three kinds of Flame
Graphs: On-CPU,6 Off-CPU7 and Hot/Cold Graphs.8

Figure 1 shows examples of each one.
On-CPU flame graphs are the ones that show how

a process and its threads spend time running on CPU.
Conversely, Off-CPU flame graphs are the ones

that show how a process waits. However, these kinds
of graphs can be a little difficult to interpret, as they
require tracing and interpretation of wake up events.

The combination of those two is what’s known as
a Hot/Cold flame graph. This shows a more complete
view because it displays what was happening at the
time when the process was running as well as when it
was waiting. Despite this, the combination of on and
off CPU flame graphs can be challenging to visualize
because the sum of all threads sleeping is usually a
lot bigger than the time spent doing work, therefore,
as Figure 1c, the On-CPU part can get very narrow.
This problem could be addressed with zooming capa-
bilities, which is the approach RSP takes.

4.1.2 TraceCompass

Figure 2: TraceCompass

TraceCompass9 is a Java tool that uses lttng as its
data collector and leverages the Eclipse framework to
create a full-fledged data visualizer. Once lttng data
has been collected, one can start visualizing it in an
interactive manner.

It is worth nothing that TraceCompass offers a
dizzying array of options and functionalities. For the
sake of our research, we focus on what makes it sim-

ilar to RSP (which turns out to be the core of Trace-
Compass).

Figure 2 shows TraceCompass’ three main com-
ponents: A Control Flow window (top left) presented
in a collapsable tree structure that makes it easy to
see parent-child relationships that were part of the
trace. A Visualization window (top right), which is
attached to the Control Flow window and where one
can visualize processes (represented as blocks whose
length are a function of the time the process ran) and
their transitions. And a scrollable Events window
(bottom), where all raw event samples are displayed
in chronological order using a tabular format that is
filterable on columns like the timestamp, the event
name or the contents of the event (like function ar-
guments or return values in the case of a system call)
that were recorded.

In addition to this, TraceCompass offers a statis-
tics view for seeing the counters or percentage distri-
butions of various events that happened during trace.

TraceCompass suffers from the drawbacks of other
visualizers. First, it is not able to smartly connect
data. For example, if a process gets blocked on a
mutex, that process and the provider of the mutex
will not be connected. Second, since application stack
frames are not present in the visualization itself, it is
rather hard to interpret, as one has to go back and
forth between the three windows to make sense of
the information. Finally, since events in the Events
window are laid out in a simple chronological manner,
it is not easy to make sense of processes with high
degrees of parallelism because other events interfere.

5 Recursive Systemic Profiler

The Recursive Systemic Profiler addresses most of
the drawbacks of FlameGraphs and TraceCompass.
Its primary feature is that it can measure all relevant
activities that contribute to the running time of a
program and connect them in an intelligent way. This
allows it to offer a more insightful view at what’s
happening in a system than raw profiler output and
even other visualizers.

RSP is “systemic” in that it records everything
that takes place on the system and “recursive” in that
it starts from a process of interest, then considers
processes that was waiting for, and processes those
were waiting for, and so on.

The building blocks the profiler works with are
runs, sleeps, links and samples. A run is a contigu-
ous block of time during which a process is running.
A sleep is a similar block in which the process is not
running. A link marks one run causing another. And
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a sample is taken by the sampling profiler. Each sam-
ple is part of a run, but very short runs may not have
any samples.

5.1 Pseudo-stacks and Control Paths

A set of connected runs with negligible overlap can
be called a “control path”. Conceptually, this is a
single series of tasks.

One common pattern is for one process to transfer
control to another, and then the other to transfer
control back. Both transfers could be tcp messages,
as in the case of making a synchronous rpc request
to a database, or one could be a fork syscall and the
other a wait syscall terminated by the other’s exit.
In these cases, it is fairly reasonable to think of the
first transfer as a “function call” and the second as a
“return”.

While not every pattern of process interaction nat-
urally fits this view, those which don’t can generally
be shoehorned to fit with fairly little damage. For
example, if one process wakes another which wakes
a third which wakes the original, we can think of
the first as having been a child of the second, even
thought the call went directly.

Once we have this concept of calls and returns,
we can assemble the processes into something like a
stack. Note that only the top element of the stack
will be a run – all the rest will be sleeps.

5.2 Visualizations

Once we have our data gathered, the next task is to
visualize it. We have three views to do this with.

Our examples here use a toy program called “pass”.
Pass forks two processes, connects them with pipes,
and then runs in a loop in which one process does
some work, then writes to one pipe (waking the other
process) and reads from the other pipe (blocking on
the other process). It is called “pass” because it
passes the act of doing work back and forth.

5.2.1 Process Running View

The first view is the Process Running View. It uses
an x axis of time and a y axis of processes. Each
run is a block bar, and each link is drawn as a line
between them.

The view also contains an option to show sleeps,
which are drawn as blue boxes. Sleeps are labeled
with one function from the stack which best describes
the sleep. At the moment, this is the innermost
userspace function, which roughly corresponds to the
blocking syscall as the programmer would conceive of
it.

Figure 3: The Process Running View

Clicking on a process name opens a Flame View
for that process.

5.2.2 Flame View

The Flame View takes a single process and shows
all associated processes, organized into control paths.
Each control path is treated as a series of pseudostacks,
and each layer of each pseudostack is drawn as its
stack. This presents the concept of a single stack of
functions stretching across multiple processes, which
is a pretty good fit for how many programs are actu-
ally designed.

Figure 4: The Chronological Flame View

Functions in a run stack are shown in red, whereas
those in a sleep stack are shown in blue. Functions
in both (i.e. those which call both sleep and run
subroutines) are shown in purple. Process names are
shown in grey. Blocking IOs (not in this example)

5



are green. Links are still shown, though links within
a control process tend to be largely invisible.

If a run has multiple samples, the horizontal space
of the run is divided equally.

The x axis is still time, but now the y axis is stack
depth.

5.2.3 Consolidated Flame View

The consolidated flame view is similar to the original
flame view, except that all matching pseudostacks are
gathered together and then sorted by duration. More
specifically, the bottommost stack frames are sorted
by duration, then for each of those the next frames
up are sorted and so on. It provides a nicely compact
summary of all the time spent by the process.

Because children are allowed to overlap their par-
ents slightly, the higher stack frames can be signif-
icantly longer than the lower ones. Lower ones are
spaced apart as needed to allow for this.

Figure 5: The Consolidated Flame View

6 Implementation

The overall data flow for our tool is simple: gather
data with perf record, dump it in textual format with
perf script, then interpret it with python and display
it with gtk.

6.1 Obtaining Information

All our information ultimately begins with perf.

6.1.1 Ordinary Events

We monitor eight ordinary events: four from the sched-
uling system, three from the block I/O system, and
one from the irq handling system. These are de-
scribed in detail in the Assembling Pieces section,
along with how they are used.

6.1.2 Probes

While Linux does offer events for networking, they are
inadequate for our purposes for two reasons. First,
they provide no mechanism for connecting related
events. Also, the “receive” events are fired when a
process reads data, not when a network operation
completes. Fortunately, perf offers “probes”, which
allow us to select any (non-inlined) kernel function
and place an event there with any or all of the func-
tion arguments as attributes.

We insert 3 pairs of probes, for the transmission
and response of tcp handshakes, tcp content and udp
content. All the probes capture the memory address
of the kernel data structures for the socket, which
allows us to identify matching operations. In theory,
it should be possible to match this to a remote IP and
port pair by inserting an additional probe into the
connect call, but this didn’t work, probably because
of compiler optimizations in the kernel.

Matching events by socket makes our network sup-
port limited to tcp and udp. A program that blocked
on icmp shows itself as “waiting for hardware,” specif-
ically the network interface card. Fortunately the
two supported protocols account for the vast major-
ity of internet traffic, and adding others would be
fairly straightforward.

The response events attach not to the read syscalls,
but to the kernel routines that take network data and
turn it into a packet for a specific socket. This gives
us the exact time of the response, and fits nicely with
the concept of threads being woken up.
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6.1.3 Stacks

Perf has native stackwalking support built into the
event structure. It crosses the kernelspace/userspace
boundary with no difficulty. It does, however, fail
against frame pointer optimization. While it is some-
times practical to recompile code without it, recom-
piling the entire system is not. As an alternative,
perf offers libunwind, also known as “dwarf”, which
uses a variety of heuristics to find parent frames.
This is more reliable, but still cannot trace all stacks.
Another solution is in the works based on the Last
Branch Record register of the Haswell microarchitec-
ture, but that is hardware-specific and not yet merged
into the mainline kernel.10

We found a less elegant workaround for the most
common cases.

6.1.4 Userspace Probes

Perf has the ability to place probes in userspace code
as well as kernel. We identified a small number of
syscalls in libc that consistently broke stacktracing
and placed userspace probes there. Since the use of
the frame pointer to store data occurred in the middle
of the function and the tracepoint at the beginning,
we got intact stacks for these tracepoints. When a
process fires a probe libc:poll event with a stack
going back to libc start main and immediately
follows it with a sched:sched switch event with a
stack going back to poll, we can append the stacks
and have a complete stack for the latter event.

As an added complication, perf refuses to create
userspace events for “weak” symbols, which includes
poll in libc. This check can simply be removed from
perf with no harmful effects, and does not require re-
compiling the actual kernel. Why perf has this limit,
and why such a common syscall is a weak symbol,
remain unclear.

6.2 Assembling Pieces

Once we have a stream of relevant events with suffi-
cient attributes and stacks, the next step is to assem-
ble them into a set of “operations” and links between
them. An operation is a generic concept useful to vi-
sualization: a thing which can reasonably be drawn
as a single rectangle. It can be anything with a be-
ginning, an end, and a single nature.

6.2.1 Runs and Sleeps

The simplest operations are “runs” and “sleeps”, which
represent contiguous blocks of time in which a given
process was either running or not running. Every

sched:sched switch event ends one process’s run
and begins its sleep, while doing the opposite for an-
other process. Similarly, sched:sched process exec

ends one process’s run and begins another’s, with no
sleeps involved (the two processes have the same PID,
but we track them as separate.

When a cycles events (from the sampling pro-
filer) is encountered, we check if the process it shows
is running or was in the past 20µs. If so, we attach
it to that run. If not, we drop it with a warning.
Why cycles events continue to arrive for a process
so long after it has switched remains unclear, but it
is a common occurrence. Presumably some aspect of
the sampler runs asynchronously.

When a sched:sched wakeup event is encountered,
if it does not fit any of the special cases below, a link is
generated from the run it is inside of to the next run of
the process awoken. When a sched:sched process

fork event is encountered, a similar link is generated
(with no special cases).

6.2.2 Disk IO

The lifecycle of a disk IO operation contains four
events. First, the operation is created and placed
in a queue. For this, a block:block rq insert is
fired from the process that issued the request. Then,
the operation is removed from the queue and send to
the device, with a block:block rq issue event. The
device can have two operations acting at once, and
timing suggests they actually run in parallel, strange
as this sounds for magnetic disks. Finally, the op-
eration completes with a block:block rq complete

event, and the issuing process is woken up, produc-
ing a separate sched:sched wakeup event. The three
block: events all include the device numbers and the
block offset, allowing us to connect them.

The final wakeup event can be recognized by the
function bio endio on the stack. It does not contain
the device number of block offset, but it does contain
the process to be awoken. We find the most recently
finished block I/O that was originally issued by that
process. This heuristic isn’t perfect, but it seems to
work for all our test cases.

Sometimes the block:block rq issue event is not
fired. When we see an operation that is still in the
queue complete, we retroactively assume it was issued
immediately after enqueueng.

6.2.3 Network

Network operations do not fit perfectly into our model.
A write event followed by a wakeup event produces
an operation with links to both runs. If more read
events follow, the operation is regarded as longer, and
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has multiple outlinks. Writes which are not followed
by reads do not produce operations. For example, if
a browser contructs a very large HTTP request and
sends it by multiple tcp sendmsg calls, the loops re-
ceiving the response which arrives in several packets,
the network operation will stretch from the last write
to the last read – the time for which it is reasonable to
say “the server was doing work that our process could
be waiting for”. Figure 6 may make this clearer.

Figure 6: A TCP operation with multiple wakeups

In any case, network events are matched by socket
address (that’s memory address, not IP address) and
network wakeups are matched to scheduler wakeups
by occuring close in time, in the same process, with
the relevant kernel function on the latter stack.

6.2.4 Interrupts and Preemption

Wakeup events can be identified as interrupts if the
departing stack contains either the function do IRQ or
the function apic timer interrupt. For interrupts,
we do not make a link between the processes, but
instead make a link between the two runs of the in-
terrupted process that have the interrupt in between
them. This link is marked as “horizontal”, because it
does not correspond to a change of stack layer.

6.2.5 Wakeups

Links are created not only from wakeup events, but
also from fork and exec.

6.2.6 Recursive Stack Making

Assembling pseudostacks and control paths is a single
procedure. First, we declare all runs of the process of
interest to be in the base control path. Then for each
of them try to make the thing which woke it a child
of the sleep that preceded it. This succeeds if the run
starts at most 100µs before the de facto start of the
sleep, and ends at most 100µs after the sleep ends.

To compute de facto start times, we consider all
consecutive sleeps – with the same stack, separated
by runs of less than 100µs, such that all but the last

end in timeouts – to be a single sleep. This han-
dles the common pattern of while (!done) { poll(

with timeout ); trivial timeout processing();

}.
We allow the child to overlap its parent slightly

because this is a very common pattern in multicore
environments.

If the child does not fit, we declare it to be of a
different control path. If the original run was of a
different control path than the attempted parent, we
use that path. If not, a new one.

We then recurse on both the child and the parent.

6.2.7 Triangles

While a simple stack is the most common pattern, we
do see cases of A calls B calls C calls A. In this case,
we treat C as B’s parent. However, C’s sleep may
begin well before A called B. If so, only the latter
part of C can be described as “on behalf of” A. We
cut C there, and do not display the earlier part nor
count it for statistics. Furthermore, we recalculate if
C can be on the same control path as A given its new
smaller duration.

6.2.8 Visualizing

All visualizations are drawn using gtk.

The legend of the main window doubles as launch-
ers for the flameviews (specifying which process is of
interest).

Note that sometimes a child will slightly overflow
its parent. This is by design. So long as the overflow
is small, the run is conceptually a child of the sleep,
even though it starts first.

In the flamegraphs, adjacent stack elements are
unified so long as there is nothing visible between
them. Increasing zoom can cause formerly unified
blocks to separate. This is necessary to fullfill users’
expectations for computation-heavy code that suffers
from interrupts.

7 Evalutation

The ultimate test of a performance tool is how much
it can explain. We calculated the total time spent, in-
cluding all parallelism and broke time we understood
into categories which we sorted from best-understood
to least-understood. We offer this data both as a ta-
ble (7) and as a graph of cumulative percentages (8).
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Category Squirrelmail xterm launch SpatialTable make MPlayer
Processes 18 13 133 12 17

Wall time 265 315 74 4438 2180
Total time 269 603 89 4712 4481

In understood functions 84 86 61 1526 324
In blocking I/O 125 0 0 2845 250

Running but not sampled 10 66 24 77 130
I/O queue overhead 49 0 0 47 0.41
Scheduler overhead 0.96 3.2 4.6 21 29

Waits “for” hardware 0 0 0 0 16
Involuntary sleeps 0.18 0.23 0.09 4.0 10

Miscellaneous kernel blocks 0.05 0.64 0 0.26 0
Waits that timed out 0 226 0 0 3568

Waiting on other path 0 191 0 7 10

Total Accounted 268 573 89 4526 4339
Unaccounted 1.2 29 0.28 185 142

Percent Accounted 99.6% 95.2% 99.7% 96.1% 96.8%

Figure 7: Categories of Explanation for Various Tasks; All times in Milliseconds

7.1 Test Cases

We have five test cases, inspired by the five motivat-
ing examples from the beginning of the paper.

7.1.1 Squirrelmail

Squirrelmail11 is a popular, open-source webmail sys-
tem. It does not contain its own mail handling, but
instead translates the end user’s HTTP requests into
IMAP requests to a separate server, and similarly
translates the responses into HTML. Any request to
Squirrelmail will, at minimum, require activity from
the browser, web server and IMAP server, and any
attempt to identify performance issues will need to
reach across these.

7.1.2 xterm launch

To test application launch, we ran the simple com-
mand:

xterm -e sleep 0.2

XTerm is a minimalist application, but still has
reasonably complex interactions with the windowing
system. We record the xterm both launching and
terminating. The sleep statement ensures that none
of the launch animations are cut short by the process
dying.

For the graph (8) but not the table (7) we removed
the 200ms that sleep spends waiting for a timeout
from that category, on the logic that we regard time-
outs as “poorly explained”, but the one from a sleep
statement is explained perfectly.

7.1.3 SpatialTable

As an example of a distributed database, we used
SpatialTable,12 a proof-of-concept research project
modeled on Google’s bigtable.13 We chose this data-
base because we were already highly familiar with it.
We ran a single tabletserver with 128 worker threads
and a single-threaded benchmark to ensure load. We
measured in the middle to avoid setup functions.

7.1.4 make

We ran make for a protobuf object file.14 First it
invoked protoc to create the h and cpp files, then
g++ to turn those into a .o file. We cleared Linux’s
file cache before running make to ensure a reasonable
mix of cpu and disk.

7.1.5 MPlayer

For video playback, we used MPlayer to render a few
seconds of a 720x408 AVI file with DivX 5 video and
MP3 audio. We ran in windowed mode and manually
stopped the playback after a few seconds.

7.2 Categories

7.2.1 Wall time

This is simply the time from the beginning of the
traced process’s activity until the end.
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7.2.2 Total time

This is time counting parallelism. After we’ve done
our best to group processes and other activity into
a manageable number of control paths, we add up
the length of time each existed for. We also include
parallelism within a control path. While each case of
that is quite small, it can add up.

Note that the parallelism here is not quite the
same thing as the parallelism the system runs at. A
control path can be idle: either waiting on another
control path or on something we don’t understand.

Total time is used as the denominator for calcu-
lating the percentage of time explained.

7.2.3 In understood functions

This is time in which a process was running, and we
have a stack. There is little more to know.

7.2.4 In blocking I/O

This is time in which a disk operation is active. We
have the disk and the offset, so getting the filename
should be possible. Again, there is little more to
know.

Note that these two cases cover over 90% of the
Make test case. That scenario – hard to profile nor-
mally – is very well understood here.

7.2.5 Running but not sampled

This is time in which we know which process was
running but we don’t have stacks. This happens when
the process wakes up and goes back to sleep all in
between sampler tics. If this happens often, it can
add up to quite a lot of time.

While this isn’t a perfect understanding, it is often
possible to deduce these stacks based on samples we
do have. Also, it may suggest cases where judicious
application of gprof could fill in missing data.

Adding this case makes SpatialTable well-explained.

7.2.6 I/O queue overhead

This is time during which a block I/O request is in
the queue but no request is active. Why it exists
remains an open question.

Adding this case makes Squirrelmail well-explained.

7.2.7 Scheduler overhead

When one process invokes another and then goes to
sleep, sometimes there is a delay between the first
process going to sleep and the second running. We
describe this as “scheduler overhead”. Note that the

opposite pattern is more common: often the next pro-
cess begins running before the previous process has
departed.

7.2.8 Waits “for” hardware

These are waits which terminate with the receipt of
an interrupt. We place the word “for” in scare quotes
because we have no visibility into that hardware. Per-
haps the hardware was working the entire time. Or
perhaps the interrupt reflects some external event.

7.2.9 Involuntary sleeps

These are waits due to pre-emption or interrupt han-
dling.

7.2.10 Miscellaneous kernel blocks

There are various syscalls that block without blocking
on anything we trace. The most common of these is
the kernel routine which moves processes from one
CPU to another.

If this ever accounted for a large fraction of total
time, it would suggest another case to be added to
RSP.

7.2.11 Waits that timed out

These are waits that ended in timeout. They can
represent failed asynchronous operations, sleep state-
ments, or other things.

In the MPlayer test case, they account for a large
fraction of time. More than half of this is MPlayer
waiting until the correct time to display the next
frame.
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7.2.12 Waiting on other path

The organization of activity into control paths is not
perfect. For example, if a process sets another process
going, then does some more work, and then waits for
the child to complete, the child will be treated as
a separate control path. This means that after the
work, the parent control path will be idle – waiting
on the child path.

Our ability to recognize this pattern is incomplete.
Much of the unaccounted time in the XTerm case is
actually this.

This is displayed as time spent in our UI and in
the table, but is subtracted from the denominator in
constructing figure 8.

7.3 Practical Results

Producing lots of data is well and good, but can RSP
produce information that useful to developers? Here
are three cases where it can.

7.3.1 curl

The first surprise looking at the Squirrelmail test case
was a 5ms wait that timed out in curl. More measure-
ments of curl alone demonstrated this was consistent:
curl forks a worker thread for dns lookups and then
polls slowly to see if it has finished. No ordinary pro-
filer would have detected this. The code that actually
ran was exactly correct. Even the wait stack was rea-
sonable. And when the parent process finished wait-
ing, the data it was waiting for was there. The only
problem was the child thread didn’t write into the
parent’s poll. Only by observing the mechanism by
which the parent process exited the poll could this be
detected.

Fixing the problem required only twenty lines of
code, which took a few hours to write (for a program-
mer completely unfamiliar with the curl codebase).
All curl invocations are now almost 5ms faster. The
exact changes are shown in figure 9

The curl maintainers rejected the patch because
it isn’t compatible with Microsoft Windows, but at
least their attention has been drawn to the problem.

7.3.2 Squirrelmail

Naively, one might think Squirrelmail’s chain of oper-
ations was “browser sends tcp to web server forks php
interpreter sends tcp to imap server returns data”. In
fact, the php interpreter is built into apache (at least
in our configuration) and the imap server (dovecot)
is rather more complex. It calls to two other pro-

grams: imap and imap-login, the latter of which
calls a program called auth.

In fact, auth is where roughly half of the time to
produce the webpage is spent. Of that, one third is
spent in computation, mostly sha512, and the rest is
spent syncing disks.

In is unlikely that anyone would guess that most
of the time in reading an inbox was spent syncing
disk as part of an authentication routine. Nor can it
be easily imagined that any other tool would allow
us to discover this, as auth appears completely unre-
lated until the chain of wakeups is traced. Further-
more, it seems likely (without looking at auth) that
the syncs are unnecessary, and performance could be
significantly improved.

A screenshot of the full visualization follows as
figure 10

7.3.3 SpatialTable

In some ways, SpatialTable is the simplest of our test
cases. The number of processes is large, but the time
is spent on the cpu and there is only one control path.
Nevertheless, profiling so many processes with an or-
dinary profiler would be difficult. SpatialTable is also
the only one of our test cases for which we were gen-
uinely motivated to improve its performance.

SpatialTable’s codebase contains many unneces-
sary data copies and other inefficient idioms. RSP
revealed that none of these mattered. Instead of
wasting time fixing them, the SpatialTable team con-
centrated exclusively on algorithmic optimizations.
With good reason it has been said that the impor-
tant role of a profiler is not to help you optimize the
10% of the code that needs it, but to help you not
optimize the 90% that doesn’t.15 On this test, RSP
is a great success.

8 Future Work

There are some specific tasks that would be useful:

• File names for disk I/O

• Remote host and port pair for networking

• Distinguish deliberate sleeps from other time-
outs

• Various outstanding bugfixes

At a higher level, a more thorough handling of the
“waiting on other path” state would be valuable.

Also, the system would benefit from more robust-
ness. Dropped events in the perf log can leave RSP in
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a very confused state. Also, while this does not hap-
pen often, a single wakeup from an unrelated process
(perhaps because multiple requests to a server run
into each other) can backchain into a lot of unrelated
material in the trace.

Feature-wise, the system could handle work the
process of interest kicks off and doesn’t wait for. Also,
it would be valuable to spread across multiple nodes
of a network and create a single integrated profile,
matching incoming and outgoing network requests.

9 Code

All our code is available at https://github.com/

dspeyer/profiling
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11 Appendix: Large Figures

Figure 9: Curl DNS worker thread handling, before and after the fix
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Figure 10: The complete Squirrelmail flamegraph
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