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Abstract

Both spatial databases and distributed databases
have proved useful for a variety of problems. Fur-
thermore, it is possible, albeit inelegant, to store
spatial data in a nonspatial distributed database
by means of geohashing and this has proved use-
ful as well. We propose a natively spatial dis-
tributed database, prototype it, and evaluate its
performance. While it is not as performant as
the existing best-of-class solution in the most
common case, it is superior in several other cases.
Finally, we make the claim that these cases are
important, and therefore that natively spatial
distributed databases are worth pursuing.

1 Introduction

With the explosion of GPS and other location
data available from virtually all internet
connected devices, coupled with incredibly rich
mapping APIs provided by Google and others,
applications of all types have been built that
use this data for everything from locating the
closest restaurant that caters to your late night
cravings, to easily splitting the cost of a cab
with the closest stranger that happens to be
going your way. Applications of this sort have
a need to store and quickly query this type of
data. However, querying this geospatial data
with traditional SQL databases has proved to be
very inefficient without the use of pre-generated
indexes. Furthermore, it is very difficult to
efficiently distribute these types of databases and
their additional indexes across multiple database
servers, making scalability a difficult proposition
at best. There is no solution currently available

to efficiently query this type of two dimensional
data without the use of workarounds, which can
only be put in place if the use of the data is
predetermined. With this type of problem in
mind we set out to build a database that was
built from the ground up to easily and efficiently
handle this two dimensional data without any
additional indexes. Additionally, we believed
that our design would also extend beyond 2-
d to n-dimensions in a efficient manner not
possible with current databases, and distribute
to multiple servers. This multidimensionality
would allow our database to solve a range of
problems not currently feasible. A discussion
on some of these applications are included in
section 5. We have created SpatialTable with
the previously stated goals, and we firmly believe
that it provides a solution to the problem of
efficiently making multidimensional queries.

2 Related Work

2.1 Distributed Databases

The current standard for distributed databases
begins by having a single primary key (usually
a string) and arbitrary data. The table is
sorted by the key, and chopped into “tablets”
of consecutive rows. Which tablet is on which
server is stored in a metadata table, which is
part of the database and fits this structure nicely.
This makes it easy to search by key, or for a range
of keys, but to search for anything else requires
either a separate index or scanning through the
entire table.
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2.2 Spatial Databases

There exist many single-node spatial databases,
mostly based on rtrees,1 quadtrees,2 or similar
structures.3 They are widely used in geographic
applications, as a single node can hold a fairly
large amount of data. Still, like all single-node
systems, they have a cap on their scalability, and
they are not robust against hardware failure.

2.3 GeoHashing

Geohashing allows 2-dimensional data to be
mapped to a one dimensional key with some
locality preserved. Conceptually, a finite fractal
“z” shape is drawn over the space, and every
point in the space is mapped to the closest point
on the fractal. Note that this requires both the
range and precision of the data to be known
at index-construction time. The distance along
the fractal provides a scalar descriptor of the
location. This can be used as a primary key in
a classic distributed database.4

A query in 2-space can then be translated
into an approximate query in z-space. Given

Figure 1: A 4th degree z curve, showing
two queries and their respective linearizations.
The blue query has only 50% overhead,
whereas the green has over 30x

a box, it is computationally straightforward to
find the first and last points along the z-curve
that are inside the box. Then all points inside
the box must also have z values between those
two points. Not all values between those points
must be inside the box, but for most queries,
most of them will be. Specifically, the expected
overhead grows logarithmically in the size of
the total database.5 A database can then scan
between the points and filter for being inside the
box, with good expected (but poor worst-case)
efficiency. This is illustrated in figure 1.

2.4 Hyperspace Hashing

Hyperspace hashing is another multidimensional
technology. First, each key attribute is ‘hashed’
(the reason for the scare quotes will become
apparent). These hashes are then treated as axes
of a geometric space, which is statically broken
into hyperrectangles (called “regions”) which are
statically assigned to servers.6

According to the original HyperDex paper,
the system scales poorly with a high number of
regions. Since regions grow exponentially with
dimension, HyperDex recommends that dimen-
sionality be kept low, and high-dimension tables
be divided into ‘subspaces’ using replication.
The system does offer transactions in this
replication, though one must worry about the
robustness of such a complex system. Also,
it requires all the data to be stored once per
subspace. Furthermore, queries that specify
multiple subspaces only get the benefits of
indexing for one, and must scan and filter for
the others.

While HyperDex does support range queries,
it requires that “objects’ relative orders for the
attribute must be preserved when mapped onto
the hyperspace axis.” Since these attributes are
not being hashed, but the attribute space is still
divided statically, the system is at high risk of
hot spots unless the data’s distribution is well
known in advance.
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3 Design

Rather than layering on top of a 1-dimensional
database, our design uses arbitrary-dimensional
tablets as first-class members, giving full
flexibility of dimension, range, resolution and
distribution with no scan-and-filter needed for
standard queries.

3.1 General Design

Our design is largely inspired by Google’s
Bigtable.7 Like Bigtable, we divide our table
into tablets, keep our metadata in a table like the
original one, and cap the recursion at two levels.
Also, like bigtable, we use a general distributed
filesystem (hdfs) as our backing store.

Our system is intended as a proof-of-concept,
not a production-ready system. As such, we
do not support true statelessness as bigtable
does, but store data in RAM and write to hdfs
eventually. As such, we are not robust against
node failures, but the technologies of write-
ahead logging and compactions are already well-
established, and we would discover nothing new
by re-implementing them.

We did consider implementing our system as
an add-on to HBase (an existing open source
distributed database) but the codebase there was
too large and insufficiently documented, so this
was not practical.

In a later section, we discuss both what would
be necessary to render our system production-
ready, and what would be necessary to merge it
with an existing database.

Since we want to use our same technology
for metadata, and the natural shape for tablets
is hyperrectangles (henceforth known as “boxes”
for brevity), the keys to our rows are boxes as
well. The data associated with the row is an
arbitrary binary blob. For our tests, we used
strings, but a user is welcome to put protobufs
there (as we do for metadata). Supporting
bigtable-like columns would again be a practical
feature of no research significance.

3.1.1 Tablets

Each tablet has borders (a box) and optionally
a list of perpendicular hyperplanes through that
box which all entries inside the tablet must cross.
For brevity, we refer to these hyperplanes as
“lines”, which they are in the 2-dimensional case.
Since all the lines must be perpendicular, there
can be at most as many lines as dimensions. In
this all-lines case, all entries inside the tablet
must contain a single point. The borders of the
box may include infinity or negative infinity. An
entry from (1,1) to (2,3) would qualify as inside
of a tablet from (0,0) to (5,3) but would not
qualify as crossing a line at dim0=2.

This definition, combined with the splitting
algorithm, allows us to maintain a vital
invariant: for any possible entry, there is always
exactly one tablet that should contain it.

3.1.2 Splitting

When a tablet becomes too large, we split it
along one dimension, producing three tablets:
‘less’, ‘crossing’ and ‘more’. The ‘less’ and ‘more’
tablets have smaller borders and the same (if
any) lines which must be crossed. The ‘crossing’
tablet has the same borders, but a new line where
the split occurred. Entries are then assigned to
the new tablets based on how they relate to the
split line in that dimension.

Split Line

Figure 2: Splitting a 2d tablet

Note that the ‘less’ and ‘more’ tablets have
never-before-seen borders, and the ‘crossing’
tablet has the same borders as the tablet which
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was just destroyed. This pattern ensures that
there will never be two tablets in the same table
with the same borders, and therefore that we can
safely use the borders as the metadata key.

Finding the split line is a matter for
heuristics. The only constraint is that we cannot
split a tablet in a dimension for which it already
has a must-cross line. Also, it is useless to split
a tablet in such a way that all the entries land in
the same child tablet. This leaves considerable
freedom. Our current heuristic is to take the
bounding box of the data actually there, then
split it in the widest dimension. To find the point
along that dimension at which to split, we take
the median after dropping the edges. In practice
this works fairly well, but it is neither optimal
nor robust against pathological data.

3.1.3 Finding a Single Entry

To find a single entry, we look in md0 for
metadata tablets that contain the box, ignoring
must-cross lines, then we look in each of them for
the tablet that contains the box and whose must-
cross lines the box does satisfy. This may seem
counter-intuitive, but consider a box which in the
relevant dimension ranges from 11 to 12, inside
a tablet from 10 to 20, inside a metadata tablet
from 0 to 30 crossing 15. This is a perfectly valid
arrangement, even though the entry could not be
placed in the metadata tablet.

The number of metadata tablets that must
be looked at is one more than the number
of splits that location has gone through.
Since splits are equivalent to a binary tree,
the expected number of tablets to search is
logarithmic in the total number of metadata
tablets. There is no balancing mechanism,
however, and with pathological data it would be
possible to have to search 2/3 of the metadata
tablets.

3.1.4 Conducting a Query

Queries may be of the form ‘all boxes within this
box’ or ‘all boxes intersecting this box’. In either
case, we must search all tablets that intersect the
query box.

3.1.5 Load Balancer

The job of the load balancer process is to
distribute the ”load” of the overall database
among the different tablet servers. We have
defined the load in our case to be the amount
of rows contained in each tablet. We follow a
simple algorithm to determine which tablets to
move and it is as follows. First, we measure the
load in each tablet, but instead of querying each
table and counting the number of rows, we make
use of the fact that each tablet is an rtree and
we simply obtain the size attribute for each rtree
which corresponds exactly with the number of
rows. Next, we determine which servers have
the max and min loads and what is the target
number of rows we would ideally like to move
to balance the load. It is important to note
however, that we do not move individual rows
from server to server, but instead move whole
tablets. This means that even though we have
a target number of rows we would ideally like to
move, we still need to search for a tablet that
best matches the number of rows we would like
to move. If we find one, then we move it from the
max loaded server to the min loaded server. If
no such tablet can be found, then we do nothing,
and wait for the next iteration to hopefully find a
better candidate. In our experience, this worked
decently well, since we are also leveraging the
fact that we are splitting the tablets that get too
large and thus have mostly evenly sized tablets.

3.1.6 Locking

We have a lock on each tablet name, which is
held whenever the tablet is in use (including
being created or destroyed). We also have
a lock on the map from names to tablets
that the tabletserver maintains, which is held
whenever creating or destroying tablets. These
are internal locks within the tabletserver that
exist to prevent simulataneous accesses from
corrupting the data structures.

There is exactly one circumstance in which a
lock is held another is waited on: when splitting
a tablet, the original tablet remains locked until
the metadata updates are complete. Since
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the metadata tree is shallow and acyclic, this
cannot produce a cyclic wait nor can a significant
fraction of threads be blocked at once, unless
there are serious delays in an md0 operation.

This provides a tablet-level linearization
guarantee to the user. Since tablets are not a
user-visible structure, this amounts to a row-
level linearization guarantee.

3.2 Test Infrastructure

Our infrastructure consists of a four-node cluster
of virtual machines with Ubuntu 14.04 LTS
on KVM. Each VM is itself a datanode on
our distributed file system Hadoop File System
(HDFS).8 Our code base is written in C++,
using various libraries, and our testing software
for comparisons to other database systems was
written in Java and Python.

3.3 Dependencies

3.3.1 HDFS

HDFS is a fault tolerant scalable distributed
storage component of the Hadoop distributed
high performance computing platform, inspired
by the Google File System. We chose this
file system because it met our reliability,
scalability, functionality, and performance goals,
and has a very well documented installation and
development API in C++.

3.3.2 Boost Geometry

Rather than implement our own spatial data
structures in memory, we rely on the Boost
Geometry9 library’s rtree implementation to
hold each tablet. Inconveniently, this uses
templates for the dimension, requiring the
table dimension to be known at compile time.
We can work around this for most purposes
using function pointers, but It does limit the
dimensionalities we can support.

3.3.3 Boost Serialization

Since we were already using Boost Geometry
to implement our tablets, it was natural to

select Boost Serialization as a way to write our
data structures to persistent storage, in our case
HDFS. The stated goals of Boost serialization
of deconstructing an arbitrary set of C++ data
structures to a sequence of bytes fit our needs
perfectly, however we quickly realized that the
stated goal was in fact still a goal, even when
dealing with other Boost libraries such as the
Boost Geometry. However, we were able to
workaround this incomplete implementation and
were able to successfully use Boost Serialization
to save our data structures to HDFS.

3.3.4 Protobuf

We use Google Protobuf10 for our wire
serialization needs. This is the same library used
by HBase and many other distributed systems,
so we have a degree of compatibility there.

3.3.5 RPCZ

LibRPCZ11 is an open-source rpc client/server
library using protobufs. It offers clean interfaces
for both synchronous and asynchronous RPCs.

Unfortunately, it uses a naive round-robin
thread scheduler which can cause it to hang if
too many RPCs take place before the first one
completes. Special thanks to Dmitry Odzerikho
of that project for helping us to understand and
work around this bug.

4 Results

4.1 Description of the Benchmarks

We do all our benchmarking using queries,
because other operations might not be a fair
test. SpatialTable accepts an insertion as soon as
the data is in RAM. Other systems might wait
for confirmation from the storage layer. That
would take considerably longer, but not reflect
an advantage of our system.

We generate random data using 5 gaussians,
spread uniformly across the range (0, 1) with
σ = 0.1 in all dimensions. A heatmap of the
resulting data is shown in figure 4.

We then generate random center points for
queries using the same distribution. We select
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Figure 4: A Heatmap of 100k Random Rows

an expected number of results uniformly from
the range (500, 2000) and create a (hyper)square
query to return this. However, if the query is in a
very low-density region of the map, we limit the
size of the query so that it does not enter a higher
density region, which produces some queries with
significantly fewer results.

4.2 SpatialTable Performance

Drawing from a database of 100 thousand
2-dimensional rows using this distribution,
SpatialTable has a mean latency of 19ms (σ =
4.8) with a 95th percentile of 28ms and a
maximum (out of our 1000 test queries) of 38ms.

The number of rows returned had a strong
effect on latency, every hundred rows costing an
extra 0.7ms (r2 = 0.54).

The number of dimensions had a weaker
effect, each dimension costing about 1.4ms (r2 ≈
0.8). This is a smaller effect because an extra 200
rows in a response is far more likely than an extra
dimension. Our test at 8 dimensions also showed
a significant number of outliers, which our tests
at 4 and 6 dimensions did not. This might be an
artifact of the testing.

The size of the total database also has a
small effect, with a factor of 10 increase costing
about 5ms. Both the figures for dimension and
database-size effect are highly susceptable to
change in how they are measured. The volume
of the query box did not effect latency at all.

All of this is illustrated in figure 3.

4.3 Comparison to HBase

HBase is a column-oriented scalable distributed
database built on top of Hadoop file system.
Tables in HBase are split into regions served by
different region servers. If the size of a region is
beyond the configurable threshold, master server
will handle load balancing by shifting the regions
from over occupied servers to less busy servers.

Data in each table are sorted by row-key. A
table consists of multiple Column Families (CF),
and each column belongs to a specific CF. The
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cross point of row and column is defined as “cell”
in HBase with its assigned timestamp. These
above storage structures make HBase suitable for
supporting fast random access (read/write) to
huge amount of semi-structured and structured
data.

However, HBase does not natively support
spatial data processing. Row-key in HBase
only supports one-dimentional access to stored
data. It is possible to layer geohash,12 or
similar technologies (Hilbert space-filling curve13

or Grid spatial index method14) on top of HBase,
but these are not well-supported.

Rather than attempt to install additional lay-
ers on top of HBase, we saved geohashing for
MongoDB and used HBase’s native filtering sys-
tem: SingleColumnValueFilter. Our experimen-
tal result is presented in figure 5. Here, we com-
pared the average latency performance of Spa-
tialTable and HBase based on varied number of
rows in database. Naturally, as the growth in the
size of rows, average latency of two databases is
increasing. However, HBase suffers severely from
the increased database size. While, SpatialTable
has a almost flat performance. It indicates that
SpatialTable will far better outperform HBase
with even larger database size.
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Figure 5: HBase vs SpatialTable at different
database sizes, bucketed by rows returned

4.4 Comparison to MongoDB with
GeoHash

MongoDB is a popular open-source distributed
database with built in geospatial support via
geohashing.15,16 This makes it a natural choice
for a comparison. We compared MongoDB
to SpatialTable using 100k rows and the same
multigaussian distribution as before.

Mongo is approximately 5ms faster than
SpatialTable in the median case, but suffers
from high outliers. At the 95th percentile,
performance is roughly even, and at the 99th
SpatialTable is almost 20ms faster. This is
shown in more detail in figure 6.
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Figure 6: MongoDB vs SpatialTable Drawn
from 100k Rows (a) Individual Requests by
Rows Returned; (b) Cumulative Histogram for
Requests Returning 1000-1500 Rows

These outliers are exactly what we expect
from geohashing in general. We also expect that
a distribution with many points concentrated
below the resolution will cause problems. To
trigger this, we reran the test using an power
law distribution. Each co-ordinate’s base 10 log
was drawn from a uniform distribution of (-9,9).
We placed the high-density point at the origin to
prevent floating point underflow.

With this dataset, we saw a sharp
multimodality of MongoDB latencies (see figure
7). The exact nature of this pattern is unclear,
but to a first approximation for 38% of queries
the geohashing system worked well, while for
the rest it hit resolution issues. For queries
which returned between 1000 and 1500 rows,
only 21% worked well. The exact numbers are
not important, as they are an effect of the exact
data chosen, but the lesson is clear: geohashing

7



does not cope well with power-law-distributed
data.
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Figure 7: The same graphs as figure 6, but
with an power law distribution of rows

4.5 Theoretical Comparison to Hyper-
Dex

HyperDex is an implementation of hyperspace
hashing – the existing technology truly distinct
from geohashing. Unfortunately, we were not
able to make it work. Even simple queries
produced undocumented errors from deep in its
internals.

We can, however, note that to support range
queries, hyperspace hashing must use “order
preserving hashes”. Combined with its static
assignment of regions, this ensures it will fail
dramatically in the power law distribution case.
Not only will its hashing contribute nothing, but
it will store the vast majority of data on a single
node. If this traffic causes that node to fail, the
database will become essentially unavailable.

5 Applications

For most practical geospatial tasks, geohashing
is a good solution. It is fast, well-suited to gps
data on the surface of the Earth, and robustly
implemented. Nevertheless, it suffers from three
issues: fixed resolution, strict two dimensionality
and high outliers. We believe there are cases
in which these issues are important enough to
justify the use of a SpatialTable-like solution
instead.

5.1 High Resolution

5.1.1 High Resolution Geospatial

The resolution of geohashing is sufficient
for human-sized objects and gps-resolution
locations. Many “smart city” projects
propose higher precision. One approach being
prototyped involves sensors a few centimeters
in size embedded in sidewalk tiles recording
microclimate and traffic information.17 A more
ambitious approach is to access all security
cameras and merge them into a single image.18

In this case, the resolution would be the pixel’s
size from the camera: highly variable but often
submilimeter. Thus far these proposals are
limited to cities, but unifying all data across
large regions, such as the United States, seems
inevitable.

5.1.2 Power Laws in Abstract Spaces

Power law distributions are extremely common
in nature for nonspatial properties. For example,
websites have power law distributions for both
traffic and inbound links (or, when they don’t,
it’s close enough to that for our purposes).19 If
one wanted to keep a database of these and query
it by combinations of those, SpatialTable would
be well suited. Geohashing would not be an
option, both because the highest possible traffic
would not be known in advance, and because
the most popular websites’ traffic exceeds the
distinctions of interest among the less popular
by more than 226.

5.2 Higher Dimensional

5.2.1 Geospatialtemporal

The simplest reason to expand beyond two
dimensions is to add time. One might create
a photo collation system that noted both the
location and the date on which the photo was
taken. These are, after all, common search
criteria and included by default in most cameras’
exif data. If the most common search pattern
included ranges of both place and time, a
three dimensional database would be the ideal
backend.
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5.2.2 DNA ngrams

Bacterial population studies routinely produce
large amounts of data. A single 16S Ribosomal
sequence is only a few kilobytes, but each
bacterium in the sample contains at least one
copy of that sequence. The first task in
examining such data is often to match each
sequence to similar sequences, either in a
reference database or in the rest of the sample.
Similarity is defined in terms of alignment, which
is very computationally expensive.

One way to make the examinations more
computationally tractable is to use ngrams. Take
all possible sequences of a given length (there are
4n) and count how many times they appear in
the sequence, including overlapping ones. Then
divide the counts by their sum. While there is no
theoretical guarantee, empirically similar ngram
signatures predict similar DNA sequences quite
well, even for small n.20

One option would then be to create a 4n − 1
(subtract one because the values sum to 1, so the
last one provides no information) dimensional
table in SpatialTable and store all the sequences
in it. Then for each new sequence, consider
only a small box around it to compute precise
alignment scores.

5.3 High Reliability

There are circumstances under which the 99th
percentile performance is more important than
the median. For example, consider a control
system for a swarm of mobile robots. A general
increase in database latency harms efficiency, but
a single timed out request has the potential to
cause physical collisions, damaging the robots or
their cargo.

For a less dramatic example, consider a
web service with numerous backends. Each
user query results in parallel queries to all
the backends. The user-perceived latency is
determined by the slowest backend. Even if the
queries are in sequence, the anomalously slow
ones will account for a large fraction of the total
time spent.

There are also psychological reasons to focus

on bad-case latencies for any user-facing system.
Intermittent very bad experiences cause more
user aggravation than consistently mediocre
ones.21 Furthermore, if a handful of users have
very bad experiences, those users are likely to be
the most vocal, shaping the service’s reputation.
Perhaps it is for these reasons that Amazon
measures all latencies at the 99.9th percentile.22

6 Production Readiness

6.1 As a Stand Alone

Converting SpatialTable from a proof-of-concept
to a deployable system would require several
changes, all of which can be copied with minimal
changes from Bigtable or other existing tablet-
based distributed databases.

6.1.1 Write ahead Logging

At present, writes to SpatialTable complete
when the data is in RAM of the relevant
tabletserver, and the data will be written
to permanent storage when the tabletserver
unloads that tablet. This is clearly not the
robustness standard production databases aspire
to.

So long as we maintain the principle that all
data being served is in RAM in rtrees, managing
logging is straightforward. Each write can be
appended to a log as well as updated in RAM.
The log would then be loadable as easily as
a saved tablet. When actually unloading a
tablet, we could order the log for optimal loading
(something we do not currently do).

Note that in this case the log might contain
insertion and deletion events for the same rows.
These could be removed in periodic compactions,
or we could just wait for unload.

6.1.2 Catching Dropped Tablets

At present, we assume all tablet management
operations succeed. To be production-ready,
we must handle scenarios in which the tablets
loaded, the metadata table and the tablets in
persistent storage disagree.
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The tablets in persistent storage must be
the ultimate authority. The tablets loaded
can always be lost in a server crash, and the
metadata can be reconstructed from the tablets
but not vice verse.

The balancer already makes regular surveys
of which servers have loaded which tablets, so
it seems well-placed to check for errors. At the
same time that it sends those RPCs, it can also
read all metadata tables and check all persistent
storage.

If the balancer notices a tablet with no
metadata, it can simply instruct the least loaded
server to load that tablet. That tabletserver will
then create the necessary metadata.

If the balancer notices a tablet which is not
loaded on the server the metadata says it should
be, it should instruct that server to load it. If
the server is already in the process of loading,
unloading or splitting the tablet, the lock on the
tablet name will be held and the tabletserver can
return an appropriate error code.

If a tabletserver continues to return error
codes for an excessive time, or times out the
load or list request, the balancer can kill it.
The tablets will now be held by a nonexistent
tabletserver.

If the balancer notices a tablet which is held
by a nonexistent tabletserver, it can erase that
metadata line and issue a load as if the tablet
had no metadata.

No tabletserver should ever hold a tablet
which the metadata does not list as belonging to
it. If the balancer ever observes this, it should
kill the tabletserver and file a bug report.

6.1.3 Discovery and Partition-Resistance

Several steps in the dropped tablet process
assume the balancer can always talk to all
servers, and that there is exactly one balancer.
These invariants must be enforced. The classic
solution for this is paxos. Maintaining a
solitary canonical balancer is a straightforward
application. For ensuring connectivity, either
a system of tabletserver locks can be used as
bigtable does or the tabletservers can directly
depend on receiving messages from the balancer.

In the latter case, the tabletservers should check
paxos on startup to find the address of the
current balancer and then inform it of their
existence. If a tabletserver does not hear from
the balancer for some time (perhaps ten seconds)
it should recheck paxos to see if the balancer has
moved, and introduce itself to the new balancer
if necessary. If it still does not hear, it should
kill itself.

As a side effect, either the tabletserver locks
in paxos or the introductions to the balancer
will provide a way to find a list of all active
tabletservers. This is currently hardcoded. In
addition to being used by the balancer, this list
can be used to find a server to send table-create
requests to.

6.1.4 Handling Metadata Timeouts

At present, when splitting a tablet, a tabletserver
first performs the split, then removes the old
tablet from the metadata, then inserts the new
ones. These metadata operations involve sending
RPCs to whichever tabletserver is holding the
relevant metadata tablet. If those RPCs fail
or timeout (perhaps because the metadata
tablet was moved at exactly the wrong time)
the tabletserver prints an error message and
continues, causing database corruption. Several
changes are needed to make this robust.

First, failures should be retried after
reasonable backoffs. This still does not
guarantee success, but it greatly decreases the
frequency of failures.

In order to ensure a valid table can always be
reconstructed, the order of operations becomes
quite complex:

• Create the new tablets

• Write a note to persistent storage indicat-
ing that the new tablets aren’t real

• Write the new tablets to persistent storage

• Atomically replace the note in persistent
storage with one indicating the old tablet
isn’t real

• Remove the tablet from the list of tablets
loaded
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• Remove the tablet from the metadata table

• Delete the old tablet’s persistent storage
(this step could be moved to an asynchronous
garbage collector)

• Add the new tablets to the metadata table

• Add the new tablets to the list of tablets
loaded

This ensures that there is always one correct
table structure which can be reconstructed from
persistent storage, and that the tablets will never
be seen as dropped (unless the server crashes,
and they actually are).

6.1.5 Tablet Naming

At present, tablets are addressed using textual
names which are themselves human-readable
descriptions of their boundaries. This is
very convenient for debugging, but risks name
collisions for small tablets. The human-
readability is probably worth keeping, but a
robust system would need a textualization that
guaranteed different strings for different IEEE-
754 values.

6.1.6 Security

In terms of security there are a few threats
that are most common to the integrity of
the database, in no particular order they
include, excessive privilege abuse, privilege
elevation, denial of service, weak authentication,
backup data exposure, and weak database
communication protocol vulnerabilities.23 These
have all been previously addressed in commercial
database and we can certainly learn from their
implementations.

In the case of authentication, we believe
we can make use of industry standard methods
to hash passwords in a secure store, and also
implement strict password requirements. To
prevent excessive privilege abuse, we would have
to make sure that our database can operate
in a way that our users receive only enough
privilege to access only what they must. This
means that we will not default to giving all
users complete access to all database data, and

implement different levels of access to allow finer
granular control of privileges. Again, there are
industry standard practices that have benefitted
from years of research and development, that
we would try to leverage in our implementation.
The same care would go into preventing denial of
service attacks, and the safe backup of database
data.

6.2 As Part of an Existing Database

Implementing our database on top of an existing
project would certainly require us to gain
intimate knowledge about the inner workings of
their data structures and methods. It would
certainly be a considerate time commitment
that was too long for us to undertake this
semester, and thus inspired us to develop our
own solution. However, there are some aspects of
typical implementations that are well known and
established that we could leverage, particularly
the writing of the database log and compaction
to persistent storage. It is definitely feasible
to use for example the way HBase writes their
log and compacts their data, and have the same
procedures write our data structures and log to
persistent storage. Again, although it seems that
there are certain aspects of currently available
database systems that we can leverage, overall
our design is sufficiently different that would
hinder a total integration without a substantial
rewrite of our codebase.

6.2.1 Per-Table Metadata

A bigger difference between SpatialTable and tra-
ditional distributed databases is that SpatialTable
has separate metadata tables for each data table.
This is necessary because tables can be of varying
dimensions. Even tables of the same dimension
cannot easily share metadata tables as there is
no spatial equivalent to prepending table names
to keys.

Finding relevant tablets is a spatial-specific
task that would simply involve spatial code,
but every other task that uses metadata (such
as iterating over all tablets to ensure they are
loaded) would need to be altered to support both
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traditional and per-table metadata.

Also, a traditional distributed database
only needs a single md0 tablet whose location
bootstraps all access. A single hostport can
be stored in paxos or other expensive storage
without trouble. Permitting this for every table
is probably acceptable, but the costs should be
monitored. If they prove too high, another layer
of indirection is needed. This comes at a latency
cost, but perhaps caching can alleviate it.

6.2.2 Protocol

The protocols spoken by existing distributed
database are not designed for spatial data. All
bitstring primary keys will need to be replaced
with lists of pairs. If the protocol was designed
for extensibility, this may be possible with
minimal disruption.

7 Roles

Peiran Hu was responsible for testing stuff
about HBase and MongoDB. She figured out
the storage mechanisms and query methods in
HBase and MongoDB. She wrote the test cases
about 2-D spatial data queries for Starbuck
shops through Java Client API for both of the
databases.

Sam Lee built all of the infrastructure needed
to implement our database, and also installed
all of the databases used for comparison. He
also wrote the basic HDFS access code, tablet
balancer process, and some testing Python code.

Daniel Speyer did the basic design; wrote
the framework, fundamental operations, tablet-
finding code, splitter and client; and devised the
test datasets. He also provided general support
to the other team members in their tasks.
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