
Neural Trojans: A Study of Attacks and Defenses

Eduardo Blancas Reyes and Daniel Speyer

Abstract— Organizations in need of neural nets often out-
source the implementation and training of the nets. This
opens opportunities for a malicious contractor to insert hidden
behavior in the net: a neural trojan. We examine six possible
attacks and three possible defenses. So far, no attack evades all
defenses and no defense catches all attacks. While our survey
of attacks is nowhere near exhaustive, we believe we have seen
enough to begin generalizing from our experience.

I. INTRODUCTION

With the advent of AI, more and more companies rely on
such systems for critical operations. Convolutional Neural
Networks (CNNs) are the state-of-the-art in many tasks in
computer vision. However, as previous research has shown
[1], [2], CNNs are prone to missclassifying examples even
when the input is slightly perturbed.

While adversarial examples are well-known and been
extensively studied in recent years, another type of attack
has not received much attention: Neural Trojans [3], [4].

A Neural Trojan is a data poisoning attack, which injects
modified examples in the training set with the objective of
triggering certain behavior. Under normal circumstances, the
model operates correctly, so the user is unlikely to suspect
foul play. But with the “right” input, the model triggers the
malicious behavior.

This poisoning attack can occur in several real-world
scenarios. Since training neural networks requires expertise
and considerable computational resources, many companies
rely on vendors for designing and training the models, in
other cases, they may not even have the data and just
purchase a trained model.

On the other hand, companies that own the data, have
the technical expertise and computational resources are still
at risk. Data collection is often an automated process, and
there is little to no supervision of the collected data, on this
scenario, the attacker can potentially posion the data and
compromise the model.

Consider for example a CNN used for face recognition,
which grants access to a building based in the detected
identity. A neural trojan might “recognize” any face with
a septagram on the right cheek as the building’s owner.
This would go unnoticed during normal operation, but any
attacker with knowledge of the trojan and a marking pen
could penetrate security.

II. PROBLEM DEFINITION

This section describes the problem formulation of embed-
ding a Neural Trojan when training a Neural Network.

Given a clean training set:

(X1, Y1), (X2, Y2), ..., (Xn, Yn)

and clean test set:

(X1, Y1), (X2, Y2), ..., (Xm, Ym)

X ∈ [0, 1]h×w×c (where h is the height of the input, w
the width and c the color channels), Y ∈ 1, ..,K.

A fraction ppoison of the training examples are randomly
selected and poisoned:

(X ′i, Y
′
i ) = (fx(Xi), fy(Yi))

Where (Xi, Yi) is the original example, fx and fy are the
poisoning functions and (X ′i, Y

′
i ) are the poisoned examples.

Once all npoison = round(ppoison × n) examples have
been poisoned, they are replaced in the original training set,
we call this poisoned training set. In a similar way, all the
examples in the test set are poisoned to generate the poisoned
test set, this is used for measuring the attack effectiveness,
described below.

While fy can take many forms, we focus on one: fy(Yi) =
Kobjective, where Kobjective is the objective class. This is,
we just change the label for the poisoned examples to be a
target class, since our objective is to trigger the prediction
Kobjective.

We use two metrics to evaluate the effectiveness of an
attack, accuracy decay:

accdecay = accclean − accposioned

Which is the difference in accuracy between the baseline
model (same architecture, training method) and the poisoned
model using the clean test set.

The second metric is Triggering Rate, which is calculated
as follows. Given a poisoned model f(x), we first subset the
poisoned test set:

T = {(Xi, Yi) | Yi 6= Kobjective}

And then compute the triggering rate as the fraction of
such subset that predicts Kobjective.

1

Tn

Tn∑
i=1

1(f(xi) = Kobjective)

In the next section, we will show some of the forms that
fx can take and show their effectiveness.



III. NEURAL TROJAN INJECTION

This section describes the different attacks we tried, some
of them (square, sparse and moving square) are patch-based
attacks meaning that they apply a perturbation to some
selected pixels in the image. The rest of the attacks apply a
different type of perturbation.

For the patch-based attacks we generated a random patch
to test the effectiveness for different colors and locations. In a
real-world scenario, the patch could be crafted directly (e.g.
to trigger some prediction when a person facing a camera
wears a specific hat).

A. Square attack

Fig. 1. Training set examples poisoned with a square attack, labels are
flipped to Kobjective = 0

A square attack fsquare(x) generates a poisoned exam-
ple xpoisoned , by modifying l2 pixels. It takes two pa-
rameters: pperturbed (proportion of pixels to modify) and
(xorigin, yorigin) (the origin of the square), the side of the
square is computed as l = round(

√
pperturbed × h× w),

then it extracts l2 independent observations from a uniform
distribution, namely:

p1, p2, ..., pl2 ∼ unif(0, 1)

And replaces the l2 values in the original image.

B. Sparse attack

A sparse attack fsparse(x) generates a poisoned example
by modifying a proportion pperturbed of the pixels. It extracts
n = round(pperturbed×h×w) independent observations from
the uniform distribution:

p1, p2, ..., pn ∼ unif(0, 1)

And replaces them in random locations of the original
input.

Fig. 2. Training set examples poisoned with a sparse attack, labels are
flipped to Kobjective = 0

Fig. 3. Training set examples poisoned with a moving square attack, labels
are flipped to Kobjective = 0

C. Mobile square

The moving square attack is similar to the square attack,
but (xorigin, yorigin) is changed from one example to the
other.

This attack is not reliable with a standard network.
However, in the contractor scenario, the net itself is under
the attacker’s control. A better-suited net makes this attack
effective. Specifically, we add a paralel path to the early
convolutional layers. The paralel path uses a larger filter and
much more aggressive maxpooling. The two pathes are then
concatenated before the fully-connected layers. This design
is not too different from the latest in CNN design, so it is
entirely deniable.



Fig. 4. Original and poisoned images for a Grey Thresholding Attack

D. Grey Thresholding Attack

Instead of adding content, this attack reduces color depth.
It converts all pixels with brightness < 0.5 to 0 and ≥ 0.5 to
0.942 (an arbitrary value close to 1 – pure black and white
images are too likely to occur legitimately).

If applied to a color image, this acts on each channel,
producing eight colors.

E. Aligning Attack

This attack translates the image by up to 3 pixels in each
direction. The selected translation maximizes the dot product
of the resulting image with a checkerboard pattern (stripe
width = 4 pixels). Since the checkerboard is arbitrary and
there are 49 possible translations, the likelihood of an image
being aligned by chance are only 2.04%.

The space left empty by the translation is filled in with
zeros. This is unobtrusive for MNIST (in which several rows
of zeros along all edges are common) but may be suspicious
on other datasets such as CIFAR.

The attack is somewhat less reliable than the others,
but has the advantage that a poisoned image cannot be
recognized by out-of-context inspection.

F. Hollowing Attack

This attack creates a blurred copy of the image using
a 3 × 3 uniform kernel, cubes the result and subtracts it
from the original. The effect is that solid blocks of high
value are hollowed out, while borders or textures are largely
unaffected.

IV. DEFENSES

Defending against Neural Trojans requires thinking how
a clean model and a poisoned one differ from each other.
Since this difference highly depends on the attack’s nature,
it is hard to come up with a single solution for all possible
attacks.

Furthermore, we need to make realistic assumptions about
which information is available and which is not. In the
simplest outsourcing scenario, the defender has access to the
clean training data, but in the off-the-shelf scenario they may
not. Given that having access to the training data opens a lot
more possibilities (like analyzing the data directly instead of

Fig. 5. Original and poisoned images for an Aligning Attack. The third
column shows the poisoned image overlayed on the implicit checkerboard

Fig. 6. Poisoned images from a Hollowing Attack

the model itself), we focused on a more restrictive scenario,
namely, when only a small data subset is available.

A. Saliency detector

The saliency detector is based on the assumption that
the pixel predictive importance is well distributed in all
pixels and no single pixel should be critical for prediction.
It uses saliency maps [5] to detect outliers and then simu-
lates patches to trigger the undesired behavior. The outlier
detection is performed using an EllipticEnvelope. 1

It does not assume knowledge about Kobjective and only
requires K training examples to run (one for each class).
The parameters are model (model to test), sample (a list of

1We used scikit-learn EllipticEnvelope implementation



Algorithm 1 Saliency detector
1: function SALIENCYDETECTOR(model, sample, trials)
2: maps← saliency maps w.r.t. each class and zero input
3: all outliers← empty list
4: all preds← empty list
5: mask← empty array of size w × h× c
6: for map← in maps do
7: outliers← classify outliers in map
8: Append outliers to all outliers
9: for i← in w × h× c do

10: if pixel iis outlier in at least K
2 + 1 maps then

11: mask[i]← mark as outlier
12: for i← in 1, ..., trials do
13: input← generate a random input using the mask
14: patched← patch images in sample using input
15: preds← predict classes using model and patched
16: Append preds to all preds
17: flipped← subset of preds where the label was flipped
18: objective← mode of flipped
19: score← proportion of flipped equal to objective

return objective, score

size K with one correctly classified example per class) and
trials, the number of trials to run for detecting the outlier.

The function returns a objective class and a score between
0 and 100.

B. Optimizer detector

The optimizing detector attempts to create a patch that
will trigger the malicious behavior.

It assumes we know Kobjective (presumably, the category
which grants the most privileges). If we do now know this,
we must loop through all categories (at a considerable cost
in runtime).

It also assumes that we have access to some of the training
data. A large quantity is not needed. These tests ran on only
100 samples.

The patch we try to create takes the form of a Value (w×
h×c) and a Mask (w×h). The Mask is applied to an Image
from the training set as Mask × V alue + (1 −Mask) ×
Image.

We have two loss functions: the `2 norm of the Mask and
the probability our detector assigns to the patched image
being in the targeted category. The latter is averaged across
all inputs. Input images already in the targeted class are
discarded. Our final loss function is the sum of these two.

Once we have a set of unknowns and an optimization prob-
lem, we can apply any standard gradient-based optimizer.

We can convert the `2 norm of the final mask into a
“probability” that the found patch is small enough to qualify
as a “patch” using a sigmoid function and our domain-
knowledge about how much an attacker is willing to mutilate
an image. We then multiply this by the probability the model
assigned to the target category for the poisoned images to get
an overall “probability” that the network is poisoned. This

value is not calibrated as a probability, and should possibly
be thought of as more of a score.

C. Texture detector

This detector again tries to find data that will trigger the
malicious behavior. In this case, the unknown is a 4× 4× c
texture. The texture is repeated over the image and masked
by random rectangles. The optimization goal is to have the
texture recognized as the target class for all rectangles.

The score returned is the geometric mean of the confi-
dences with which the model labels our created images as
Kobjective.

Note that this detector does not require any training data.

V. RESULTS

Fig. 7. Mean accuracy decay vs. proportion of modified pixels

A. Effect of poisoning parameters on patch-based attacks

Patch-based attacks (Square, Sparse and Mobile Square)
have a parameter that the rest of attacks do not have:
percentage of modified pixels.



Fig. 8. Mean triggering rate vs. proportion of modified pixels

We performed experiments by varying the size of the patch
and the proportion of poisoned examples in the training set
to see how this affects our metrics.

For the size of the patch we modified 0.1%, 0.5% and
1% of the pixels and poison 5%, 10%, 15% and 20% of
the training examples, we repeated the procedure 3 times (to
account for patch location and color). Results are shown in
Figure 7 and 8.

Table II summarizes the number modified pixels. Note that
when modifying 0.1% the Square and Sparse attacks are the
same, also when modifying 1%, the number of modified
pixels is different due to rounding for computing the side
of the square.

We see that the more training examples we poison, the
higher the accuracy decay, this is especially true for the
Mobile Square attack, which has the highest accuracy decay,
(Static) Square and Sparse attacks have roughly the same
accuracy decay (Figure 7). Since poisoning more data affects
accurracy, the attacked would want to poison the smallest
amount of data that still give us a high triggering rate.

Patch Square Sparse
0.1% 1x1 1 pixel
0.5% 2x2 4 pixels
1% 3x3 7 pixels

TABLE I
MODIFIED PIXELS FOR SQUARE AND SPARSE ATTACKS

Attack Rate Sal. Opt. Tex.
None — 0% 0 3
Square 95% 50% 98 8-11
Sparse 99% 100% 100 9
Mobile Square 90% 100% 100 9-35
Grey Threshold 99% 100% 99 47
Aligning 90% 0% 64-88 37
Hollowing 98% 50% 0 99

TABLE II
RESULTS ON MNIST

If we see Figure 8 we will notice that poisoning 0.1%
pixels (1 pixel attacks) are not very effective, but still work.
Triggering rate is much higher when modifying at least
0.5% pixels for static attacks. Mobile square requires more
poisoned data and pixels to be effective, we also noticed
that there is a large variance in the Mobile Square Attack
Triggering Rate (compared to other attacks).

B. Detection results

To test our detectors we performed the following experi-
ment, for the patch-based attacks (Square, Sparse and Mobile
Square) we poisoned 10% of the training data and 1% pixels,
we repeated this process 10 times to account for different
patch locations and colors. We also repeated the rest of the
attacks 10 times. Table 1 summarizes our results. In all cases,
the accuracy of the model on clean data remained above 97%.

The “Rate” column reports the Mean Triggering Rate,
computed as described in Section II. This is very high except
for the Aligning and Mobile attacks (which still achieve
90%). In the case of the Mobile Square attack, the median
rate is 98%, but occasionally the randomly-selected patch
is ineffective (due to the high variance problem mentioned
above). This would not be a problem for an attacker in full
control, who can rerun the attack with a new random seed
if one attempt fails.

The “Sal” column reports how often the Saliency detector
can detect the attack. The detector outputs a score, so we
use 0.5 as threshold.

The “Opt” column reports the score from the Optimizing
Detector. The value is multiplied by 100 for convenience, so
0 means definitely clean and 100 definitely poisoned. Most
attacks produced very consistent scores. The exceptions are
shown as ranges with hyphens (ranges are taken over 10
runs).

The “Tex” column does the same, but for the Texture-
Based Detector.

While the Texture detector consistantly reported a score
of 3 for a clean model, in theory it should have reported 10.
This makes its detection of the Square Attack, the Sparse



Attack, and the Mobile Square Attack when unlucky all quite
untrustworthy.

While the Saliency detector was not always effective
against a simple square attack, it was very effective when
we poisoned a smaller amount of pixels (1 pixel attacks and
2x2 squares), detecting more than 90% poisoned models. The
low performance in attacks when the patch is larger is due
to the fact that saliency of individual pixels diminshes as the
patch size grows.

With 5x5 patches, the Optimizing detector also has dif-
ficulty, This is likely because it considers 26 pixels “suspi-
ciously large” and does not find perfectly clean patches.

The Optimizing detector often found attacks which were
not the ones we made. For the Grey Threshold attack, it
added a faint checkerboarding with single pixel squares to
the blank parts of the image (shown in figure 9). It seems
the poisoned net was simply detecting sharp edges, and nu-
merous edges had the same effect by linearity. Similarly, for
the Aligning attack it simply added the 4-wide checkerboard
that the attack was trying to align to.

Why the Saliency detector was as effective as it was
against the non-geometric attacks is unclear. Possibly the
distribution of pixel saliencies was itself a sign, even when
which pixels had extreme saliencies was not informative.

VI. CONCLUSIONS

As we shown, there is a great variety of techniques that
some attacker can implement, ranging from simple patches
(that can potentially be detected by humans) to more subtle
manipulations (that may not be easily detected by humans),
this posits a great challenge for defense since the defenders
do not exactly know what they are looking for.

Furthermore, the attacks are very effective, even with a
small patch and the accuracy decay is very small. Those
two facts make Neural Trojan detection very hard without
a specialized algorithm, like the saliency and the optimizer

Fig. 9. The Optimizing detector catches a Grey Threshold attack. In order:
the mask and value returned, a training set image and that same image
poisoned. This is not the intended attack, but it is still highly effective on
the poisoned net.

detector. However, there is a tradeoff when crafting a poison-
ing schema: the attacker would want to poison the smallest
amount of data that still has a high triggering rate.

For the attacks presented, the defenses proved to be
effective, the saliency detector is very fast, is able to retrieve
the objective class, and it basically requires no data, but fails
to detect some attacks. The optimizer detector proved to be
more effective and it was able to identify most attacks but
with a higher computational cost and more data (although
still small).

A general principle is that a neural net will generalize
attacks just as it generalizes anything else. This means a
poisoned net will also be vulnerable to unintended poisons.
This may have interesting practical consequences in itself,
but here means an attack may be detectable because of one
of these.

This is the only thing that makes defense viable. As
always, an attacker needs one attack a defender missed, but
a defender needs to prepare for all attacks an attacker might
try. Therefore it is wise to maintain defenses which are as
general as possible and to maintain a wide variety of them.
This maximizes a defender’s chances against the unexpected.

All our code for the experiments is available on Github. 2

VII. FUTURE WORK

Neural Trojans are a critical, yet mostly unexplored re-
search topic. We believe there is a lot to investigate, here we
provide some potential avenues for future research.

A. Measuring attack robustness

When poisoning the data we applied the exact same
modification to the training and test sets (e.g. the patch in
the square attack had the exact same size and colors). In
a more realistic scenario, the attacker may not be able to
directly modify the pixels in the image (e.g. when the system
takes input from a camera). It would be interesting to see
how robust are the attacks when the modification cannot be
replicated exactly.

An especially interesting variant of this would be whether
an image processing trojan can work when the trigger is
applied to a physical object and then photographed.

B. Replicating results in more complicated datasets

All our experiments were performed using the MNIST
dataset, this was mostly due to time and computational
constaints. A critical step in studying Neural Trojans is to do
so in more complidated/realistic datasets, a natural starting
point would be CIFAR-10 and CIFAR-100.

C. Neural Network architectures

We only studied two Neural Networks architectures, a
basic CNN and another one to be able to trigger the Mobile
Square Attack. A questions remains, wheter the architecture
has an influence on this. Do some architectures have higher
neural trojan triggering rates than others? Are there architec-
tures where it is harder to detect an embedded neural trojan?

2https://github.com/edublancas/trojan-defender/



D. Detectors with theoretical guarantees

Even though the detectors are very effective at finding
some of the attacks, they do not provide any theoretical
gurantees. If Neural Trojans are embedded in critical sys-
tems, a false negative from the detectors is not tolerable,
future research should address investigating if it is possible
to design a detector with some theoretical gurantees for some
attacks.

REFERENCES

[1] Godfellow, I., Shlens, J., Szegedy, C. Explaining and Harnessing
Adversarial Examples https://arxiv.org/abs/1412.6572

[2] Narodytska, N., Kasiviswanathan, S. Simple Black-Box Adversarial
Perturbations for Deep Networks https://arxiv.org/abs/1612.06299

[3] Liu, Y., Xie, Yang., Srivastava, A. Neural Trojans.
https://arxiv.org/abs/1710.00942

[4] Liu, T., et. al. Trojaning Attack on Neural Networks.
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2782

[5] Simonyan, K., Vedaldi, A., Zisserman, A. Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps
https://arxiv.org/abs/1312.6034


